Name..... Math Analysis II HW 2 Due 02/07/2013

1. Let $f_n(x) = \frac{nx}{1+nx}$ for $x \ge 0$

1

- a) Find $f(x) = \lim_{n \to \infty} f_n(x)$.
- b) Show that for a > 0 convergence is uniform on $[a, \infty]$.
- c) Show that convergence is <u>not</u> uniform on $[0, \infty]$.

2. Let $f_n = \frac{1}{1+x^n}$ for $x \in [0, 1]$

- a) Find $f(x) = \lim_{n \to \infty} f_n(x)$.
- b) Show that if 0 < a < 1, the convergence is uniform on [0, a].
- c) Show that the convergence is not uniform on [0, 1].
- 3. Determine whether the sequence $\{f_n\}$ converges uniformly on D.

a)
$$f_n(x) = \frac{1}{1 + (nx-1)^2}$$
 $D = [0, 1]$

b)
$$f_n(x) = nx^n(1-x)$$
 $D = [0,1]$

c)
$$f_n(x) = \arctan \frac{2x}{x^2 + n^3}$$
 $D = \mathbb{R}$

4. Suppose that the sequence $\{f_n\}$ converges uniformly to f on the set D and that for each $n \in \mathbb{N}$, f_n is bounded on D. Prove that f is bounded on D

5. Suppose a sequence of functions $\{f_n\}$ are defined as

$$f_n(x) = 2x + \frac{x}{n} \qquad x \in [0, 1]$$

a) Find the limit function f.

b) Is f continuous on [0,1]?

c) Does
$$[\lim f_n(x)]' = \lim f'_n(x)$$
 for $x \in [0, 1]$?

d) Does $\int_0^1 \lim f_n(x) dx = \lim \int_0^1 f_n(x) dx$?

6. Give examples to illustrate that

a) there exists differentiable functions f_n and f such that $f_n \to f$ pointwise on [0,1] but

$$\lim_{n \to \infty} f'_n(x) \neq \left(\lim_{n \to \infty} f_n(x)\right)' \quad x = 1$$

b) there exist continuous functions f_n and f such that $f_n \to f$ pointwise on [0,1] but

$$\lim_{n \to \infty} \int_0^1 f_n(x) \neq \int_0^1 \left(\lim_{n \to \infty} f_n(x) \right)$$

.

8. Let $\sum_{n=0}^{\infty} a_n x^n$ be a power series with radius of convergence r, where $0 < r \le +\infty$. If 0 < t < r, prove that the power series converges uniformly on [-t, t].

9. Suppose a differentiable function $f : \mathbb{R} \longrightarrow \mathbb{R}$ has a uniformly continuous derivative on \mathbb{R} . Show that

$$\lim_{n \to \infty} n[f(x + \frac{1}{n}) - f(x)] = f'(x)$$

10. Let $f_n: [1,2] \longrightarrow \mathbb{R}$ be defined by

đ

$$f_n(x) = \frac{x}{(1+x)^n}$$

- a) Show that $\sum_{n=1}^{\infty} f_n(x)$ converges for $x \in [0, 2]$.
- b) Use Dini's Theorem to show that the convergence is uniform.
- c) Does the following hold:

$$\int_1^2 \left(\sum_{n=1}^\infty f_n(x)\right) dx = \sum_{n=1}^\infty \int_1^2 f_n(x) dx$$